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The waves generated by the steady motion of an obstacle along the axis of 
a uniformly rotating, electrically conducting homogeneous fluid have been 
studied by Lighthill’s technique. The wave-number surface consists of a sphere 
and four coincident planes. The waves corresponding to points on the sphere 
travel ahead or trail behind the obstacle according as al the AlfvBn velocity, is 
greater or less than U ,  the velocity of the obstacle. By drawing the appropriate 
normals to the four planes, it is seen that the formation of a Taylor column ahead 
of the obstacle is possible even at large Rossby numbers when U < a, in contrast 
with the non-magnetic case and the case with U > a,. 

1. Introduction 
It has long been established that disturbances in uniformly rotating incom- 

pressible liquid can propagate as wave motions. Taylor (1922) has shown that 
rotating liquid can transmit plane and spherical waves of length nU/D, where 
D is the angular velocity with which the liquid is rotating and U is the velocity 
of translation of a non-vibrating source of disturbance along the axis of rotation. 
A general theory with an application to rotating liquids has been developed by 
Lighthill (1 967) to study the dispersive waves generated by travelling forcing 
effects which may be steady or oscillatory or transient in character. In  this note 
Lighthill’s theory has been applied to study the waves created by the steady 
motion of an obstacle along the axis of an electrically conducting homogeneous 
rotating liquid. The undisturbed motion consists of a rigid rotation Q about an 
axis and a uniform magnetic field H, applied along the axis of rotation. Three cases 
arise according as a, 3 U .  When U < a,, the wave-number surface consists of 
a sphere and four coincident planes and for U = a, it is just four coincident 
planes. The waves generated in the case U > a, are qualitatively similar to those 
without magnetic field. In  the present case also the spherical waves trail behind 
the obstacle but their wavelengths are reduced by a factor 1 - (a:/ U z ) .  The un- 
attenuated waves, which are two-dimensional in character, propagate both ahead 
and behind the obstacle in a Taylor column and the waves ahead are subjected 
to a ‘low-pass filter’ passing only wave-numbers below 2QU/(  U2  - a:). The wave- 
number range admissible in this case is bigger than the corresponding range in the 
non-magnetic case and hence the disturbances ahead in the Taylor column are 
intensified at  small Rossby numbers. In  contrast with the above case, for U < a,, 
the spherical waves are found ahead of the obstacle and the unattenuated 
disturbances in the Taylor column are not subjected to any constraints. 
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2. The equations of motion 
The equations, referred to a rotating frame of reference, governing the motion 

of an incompressible, inviscid, unbounded, infinitely conducting liquid rotating 
about Ox as a rigid body in the presence of an externally applied magnetic 
field are 

avjat + (V. V) v+p/4n-pH x v x H+2Qf x v = vp+ &(x- Ut, y, z) ,  (1)  

a H / a t - V x ( V x H )  = 0, (2) 

v.v = 0, V . H  = 0, (3) 

where V is the velocity vector, H is the total magnetic field, p is the permeability 
of the medium, p is the density, i2 is the angular velocity of the liquid, i: the unit 
vector in x direction, & is a steady forcing term moving with velocity U in 
x direction and p = ( -p ‘ /p )  + +Q2(y2+ 9). In  these equations the displacement 
current has been neglected (V < C the velocity of light). 

The equations (1) and (2) on linearization, for a magnetic field H, applied in 
the x direction, reduce to 

av H, ah --p--++Qi:xV=vp+g, ,  
at 4np ax 

ah av 
at Oax ’ 
- -H - = 0 

(4) 

where h is the perturbed magnetic field. By taking a/at curl of (4) and making use 
of ( 5 )  and (3), we get 

where a; = H,2pu/4n-p and curl g, = g. Again operating with (a2/at2 - af a2/ax2) curl 
on (6) and after some manipulation, one findst 

where 

By taking three-fold Fourier transform, the formal solution of (7) is given by 

where k = If + mj + nf; is the wave-number vector, r = XI + yj + xf; is the position 
vector, P( UZ, I, m, n) = ( U212 - a; Z2)2 (12 + m2 + n2) - a@( U2Z2) 12, (10) 

t For a mass source disturbance, the forcing term g, appears in the first of (3) instead 
of (1). In this case the equation (7)  remains the same except for a change in right-hand side. 
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and f(r - f Ut)  = ~ ~ m ~ m  Im F(k) exp [ik. (r - i U t ) ]  dl dm dn, (11) 
-m --m 

where P(k) = P(Z, m, n)  is a regular function for all I, m, n. The contributions to 
the integral (9) come from the roots of the equation 

P( Ul,  1, m, n)  = 0, (12) 

which is called the wave-number surface and it consists of a sphere and four 
coincident planes. At each point of the wave-number surface, we draw an arrow 
normal to the surface choosing from the two normal directions the one pointing 

(13) 
towards the surface P(UZ+6,Z,m,n) = 0, 

with S small and positive. Then the waves are found in the direction of the 
arrows at  each point of the wave-number surface, stretching out from the 
forcing region. The amplitude of the waves corresponding to the sphere is 
asymptotically given by (Lighthill 1967) 

where R = Ir - iUtl is the distance from the forcing region, V is the operator grad 
with respect to 1, m, n and K is the Gaussian curvature of the wave-number 
surface. The equation (14) cannot be used for the waves corresponding to 
multiply covered plane part of the wave-number surface. A modified method is 
given a t  the end of $3.  

Nigam & Nigctm (1963) applied the methods of Lighthill (1960) to the more 
general problem of waves created by a periodic point source with frequency o, 
placed at  the origin of an unbounded electrically conducting rotating liquid with 
uniform velocity of translation U along the axis of rotation. 

3. Discussion of the results 
The wave-number surface is given by 

14[(U2-a~)2(12+m2+n2)-4Q2U2] = 0. 

Three cases will arise according to  whether U > or = or < a,. 

Case 1. U > a, 

The wave-number surface consists of a sphere 

and four coincident planes (figure 1). The wave-numbers on this sphere corre- 
spond to waves of uniform length n( U2 - a;)/BU and arbitrary direction. The 
wavelength is reduced in comparison with the non-conducting liquid case for 
which it is nU/s2. The directions of the arrows on the sphere are such that these 
waves are found only behind the forcing region. 
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The surface (15) includes a straight portion, the plane I = 0 taken four times. 
The arrows along the appropriate normal must be drawn on the four planes and 
the normal directions appropriate to each plane may or may not coincide. By 
drawing the surface (13) for small positive 6, we observe that the plane 1 = 0 of 
(15) splits into four sheets, three of which lie below and one above I = 0 when 

(rn2+n2)& < 2QU/(Uz-a3 ,  (17) 

( U2 -a;") 112 nu 

FIGURE 1. U > a,: wave-number surface for inertial waves generated by steady motion of 
an obstacle with velocity ( U ,  0, 0) through an infinitely conducting fluid rotating at  
angular velocity (0, 0, 0) with an applied uniform magnetic field (H,,, 0, 0). It consists of 
a sphere and four coincident planes. 

and otherwise all the four lie below it. The arrows to the planes are shown in 
figure 1. An analytical discussion is given later. The physical explanation of the 
result is that these waves with zero phase velocity, whose crests are parallel to 
the axis of rotation have group velocities 

c, = (l/s)(Q+(Q2+u;Q2)*), c2 = (l /s)(-Q+(~2+u;S2)f),  (18) 

(19) 

where s = (m2 + n2)&, directed along the axis either up or down it. The inequality 
(17) can be written as 

where (19) is satisfied, C, exceeds U so that forward influence becomes possible, 
otherwise U exceeds all the group velocities so that all the disturbances trail 
behind the obstacle. The waves propagate without attenuation because the 
associated part of the wave-number surface is plane. After a long enough time 
the waves satisfying (19) extend arbitrarily for both ahead and behind the 
obstacle in a Taylor column. 

(77-C,)(U+C,) < 0, 
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If the Rossby number defined by 

( U2 - a2,)/2QUa (20) 

is large where ‘ a 7 ,  the transverse dimension of the obstacle, is small, then it cannot 
significantly excite waves satisfying (17). But as the ratio (20) decreases, trans- 
verse disturbances satisfying (17)  can be increasingly excited by the obstacle. 
The transverse disturbance extending ahead of the obstacle is subjected to 
a ‘low pass filter’ passing only waves with wave-numbers below 2QU/( U 2  - a;). 
The disturbances that extend behind the obstacle are not subjected merely to 
a complementary ‘high pass filter’ but include some low wave-number terms 
also. This result is in contrast with Rossby waves but similar to the case without 
magnetic field (Lighthill 1967). 

Case 2. U = a, 
The wave-number surface consists of four coincident planes. There are no 
spherical waves. The arrows to the planes point one ahead and three behind so 
that waves propagate without attenuation both ahead and behind the obstacle. 

Case 3. U < a, 

The wave-number surface consists of the sphere 

and four coincident planes (figure 2). The wave-numbers on this sphere corre- 
spond to waves of uniform length r(a2,- U2) /QU and arbitrary direction. The 
direction of the arrows on the sphere are such that these waves are found only 
ahead of the obstacle. The directions of the arrows to the four planes are obtained 
in the same way as in the previous case. Three of them point downwards and one 

(22) 
upwards when nL2+n2 < 2QU/(a2,- U2), 

and otherwise two point upwards and two point downwards. For a physical 
explanation the condition (22) can be written as 

(U+C,)(U-C,) > 0. (23) 

From (18) it follows that C, > a, and further Cl > a, > U (from case 3). From (23) 
U > C,, therefore C, > a, > U > C,. When (23) is not satisfied both C, and C, 
exceed U .  This explains the arrows shown in figure 2. Thus in this case the 
forward influence is possible even when (23) is not satisfied. This result is in 
contrast with the case U > a, and the case without magnetic field. The waves 
propagate without attenuation both ahead and behind the obstacle in a Taylor 
column without any restriction on the wave-numbers or Rossby number. 

To estimate the magnitude of the unattenuated disturbances, the method 
leading to (14) cannot be used without change because the integral to be esti- 
mated has a fourth-order pole singularity on four times covered portions of the 
wave-number surface. The method is modified as follows: Let us consider 
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where G(l,m,n) 5 [a2,12-((Ul+is)2]2(12+m2+n2)-4Q2(Ul+ie)212. (25) 

By putting e = 0 in (25) the equation (24) coincides with (9). The problem is to 
estimate the inner integral of (24) when Ix- Utl is large. When s is positive but 
very small, the fourth-order pole 1 = 0 is split into four simple poles at  

- ise - iss 
1 -  1, = 

1 -  1 -  
3 - R+ U s - ( ! P + a $ q ’  

-Q+ Us-(CP+a;s2)6’ - - R +  Us+(R2+a;s2)*’ 

(26) 
- as& - iss 

4 - R+ U s + ( W + a y $ ’  

+ n”*l/2 nu 

i 
FIGLJRE 2. U < al : wave-number surface for inertial waves generated by steady motion of 
an obstacle with velocity ( U ,  0, 0 ) ,  through an infinitely conducting fluid rotating at 
angular velocity (a, 0 ,O)  with an applied uniform magnetic field (Ho,  0, 0). It consists of 
a sphere and four coincident planes. 

When (17) is satisfied, I, > 0 and l,, l,, 1, < 0, so that by Jordan’s lemma there is 
a contribution to the integral from the pole I = I, when x- Ut > 0 and from 
1 = l,, I,, 1, when x- Ut < 0. But when (17)  is not satisfied all I,, I,, I,, 1, have 
negative imaginary parts and there is no contribution at  all for x - Ut > 0. This 
agrees with the direction of the arrows in figure 1. 

When (22) is satisfied, there is a contribution from 6, when x- Ut > 0 and 
from I , ,  I,, 1, when x- Ut < 0. But when (22) is not satisfied a, and I, contribute 
for x - Ut > 0 and I,, 1, contribute for x - Ut < 0. This agrees with the direction 
of the arrows in figure 2. 

The contribution to the inner integral of (24) by the residue at  the pole 1 = I, is 

- 7riP(ll, m, n) exp [il,(x - Ut)]  
[(a:- U2)2- 4Q2U2] (1,- 1,) (Il- 1,) (11-14)* 
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Similarly, the contributions due to the poles I = I,, 13, l4 can be written down. 
The difficulty in taking the limit as E-+  0 disappears when one realises that for 
a steady disturbance (8) reduces to 

(28) 

whose Fourier transform F(Z, m, n) contains a factor 13. Then taking the limit as 
E -+ 0 of (27) and similar expressions for I,, I, and I ,  by L’Hospital’s rule, we get 

-7ri (B’/i%)ll=os( - Q +  Us_+ (CP+ats2)&) 
8!2(Q2 + a2,s2)* (SZ  & (Q2 + a;s2)*) [( U 2  - a:) s - 2SZUI’ 

-7ri(a.F/~l)I,=,s(Q+ Us  (SZz+a:sZ)*) 
8!2(Q2+ a? s2)3 (SZ t- (@+a: s2)*) [( U2- a:) s + 2QU] ’ 

where the upper signs in (29) and (30) are the limits for I = 1,) I = 1, and lower 
signs are the limits for 1 = I ,  and 1 = Z,respectively. The expressions (29) and (30) 
give the estimates of the inner integral of (24). 

f = (a3//ax3) (U3 curl g - Ua: curl g - 2QU2g) ,  

(29) 

(30) 
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